=====Start a script ===== library(stargazer) rm(list = ls()) set working directory setwd("/path/to/my/directory") data from excel dataset <- readXL("data.xlsx", rownames=FALSE, header=TRUE, na="", sheet="Sheet1", stringsAsFactors=TRUE) data from Rdata =====Summary Stats===== stargazer(dataset, type = "text", title= "Summary Statistics", digits = 2, out="output.csv") type can be html, text or, by default, latex. stargazer(dataset, type = "text", title= "Summary Statistics", summary.stat=c("n","mean", "median", "p90","sd","min", "max"), digits = 2, out="output.csv") =====Regressions===== linear reg1 <- lm(depvar ~ var1 + var2 + var3, data=dataset) use rlm for robust regressions probit reg2 <- glm(dummyvar ~ var1 + var2 + var3, family=binomial(link=probit), data = dataset) table stargazer(reg1, reg2, header=FALSE, title="Regression Table", type='html', digits=2 , out="output.html") =====Exemples===== install.packages("MASS") install.packages("readODS") install.packages("tidyverse") install.packages("devtools") devtools::install_github("gvelasq/tidytab") #load libraries #import ods library(readODS) #import xls/xlsx library(readxl) #robust lm library(MASS) #for tables library(stargazer) library(tidytab) # for data manipulation library(tidyverse) # set work directory setwd("/home/glebelg/nextcloud/Work/time to code/") # import ods db1<-read_ods(path = "dbtest.ods", sheet = 1) db2<-read_excel("dbtest.xlsx") #generate variables in dataset db1$niveauscore <- db1$niveau * db1$score #option2 - si beaucoup d'opérations! attach(db2) db2$niveauscore <- niveau * score detach(db2) attach(db1) db1$niveauminscore <- niveau - score detach(db1) # OLS regressions model1 <- rlm(score ~ age, data=db1) model2 <- rlm(score ~ niveau, data=db1) model3 <- rlm(score ~ age + niveau, data=db1) stargazer(model1, model2, model3, type="text", title="Regression Results",p.auto=TRUE, single.row=FALSE, ci=FALSE, ci.level=0.9, omit.stat=c("ser")) #summary statistics table stargazer(as.data.frame(db1), type="text", summary=TRUE) # tabulate table ("Age"=db1$age,"Sexe"= db1$sexe) db1 %>% tab(age, sexe) db1 %>% tab1(age, sexe) db1 %>% ftab( sexe, age) =====Import/Export===== import excel library(readxl) db <- read_excel("db.xlsx") View(db) import stata library(haven) db <- read_dta("db.dta") View(db) export excel install.packages("xlsx") library(xlsx) write.xlsx(db, file = "db.xlsx") =====Data Manipulation===== ====drop publicates==== newdata <- distinct(dataset,varname, .keep_all = TRUE)